人工智能方法在医学图像处理领域应用的新进展进行综述

2018-01-06

图像识别是立体视觉、运动分析、数据融合等实用技术的基础,在导航、地图与地形配准、自然资源分析、天气预报、环境监测、生理病变研究等许多领域重要的应用价值:

getImg医学25.png

1)遥感图像识别:航空遥感和卫星遥感图像通常用图像识别技术进行加工以便提取有用的信息.该技术目前主要用于地形地质探查,森林、水利、海洋、农业等资源调查,灾害预测,环境污染监测,气象卫星云图处理以及地面军事目标识别等.
2)通讯领域的应用:包括图像传输、电视电话、电视会议等.
3)军事、公安刑侦等领域的应用:图像识别技术在军事、公安刑侦方面的应用很广泛,例如军事目标的侦察、制导和警戒系统;自动灭火器的控制及反伪装;公安部门的现场照片、指纹、手迹、印章、人像等的处理和辨识;历史文字和图片档案的修复和管理等等.
4)生物医学图像识别:图像识别在现代医学中的应用非常广泛,它具有直观、无创伤、安全方便等特点.在临床诊断和病理研究中广泛借助图像识别技术,例如CT(Computed Tomography)技术等.

getImg医学13.png

5)机器视觉领域的应用:作为智能机器人的重要感觉器官,机器视觉主要进行3D图像的理解和识别,该技术也是目前研究的热门课题之一.机器视觉的应用领域也十分广泛,例如用于军事侦察、危险环境的自主机器人,邮政、医院和家庭服务的智能机器人.此外机器视觉还可用于工业生产中的工件识别和定位,太空机器人的自动操作等.

getImg医学11.png

随着医学影像智能化诊断的快速发展,为了满足愈加复杂的医学图像分析和处理要求,人工智能方法成为近年来医学图像处理技术发展的一个研究热点。本文对近五年来人工智能方法在医学图像处理领域应用的新进展进行综述。方法:将应用在医学图像处理领域主要的几种人工智能方法进行了分类总结,讨论了这些方法在医学图像处理各分支领域的应用,分析比较了不同方法间的优缺点。结果:人工智能方法应用主要在医学图像分割、图像配准、图像融合、图像压缩、图像重建等领域;包括蚁群算法、模糊集合、人工神经网络、粒子群算法、遗传算法、进化计算、人工免疫算法、粒计算和多Agent技术等;涉及MR图像、超声图像、PET图像、CT图像和医学红外图像等多种医学图像。结论:由于医学影像图像对比度较低,不同组织的特征可变性较大,不同组织间边界模糊、血管和神经等微细结构分布复杂,尚无通用方法对任意医学图像都能取得绝对理想的处理效果。改进的人工智能方法与传统图像处理方法的结合,在功能上相互取长补短,将是医学图像处理技术重要的发展趋势。



写下你的评论吧